

Assessing the Global Precipitation Measurement Level II and Level III with Multi-Radar/Multi-Sensor: current status and future directions

Pierre Kirstetter

with contributions of:

W. Petersen, C. Kummerow,

J. Turk, S. Tanelli, G. Huffman,

J.J. Gourley, J. Zhang, Y. Hong,

V. Maggioni, E. Anagnostou

- 1. Context: MRMS & comparison framework
- 2. Active sensor: Dual-frequency Precipitation Radar
- 3. Passive sensor: GPM Microwave Imager
- 4. Multi-satellite: Integrated Multi-satellitE Retrievals
- **5. Conclusions & perspectives**

Overview of the Multi-Radar Multi-Sensor System (MRMS)

Domain: 20-55° N, 130-60° W

Resolution: 0.01°, 2 min update cycle

Data Sources:

~180 polarimetric radars every 4-5min

~9000 gauges every hour

- RAP model hourly 3D analyses

frontal system at 0800 UTC on 11 April 2011

GPM and MRMS

Precipitation features:

- intermittency
- type
- rate variability

Comparing GPM with MRMS: bridging the Core and Constellation Sensors

Comparing GPM with MRMS: bridging Level-2 and Level-3 precipitation products

impact on Level II & III retrieval algorithms

- 1. Context on MRMS and GPM
- 2. Dual-frequency Precipitation Radar
 - diagnostic: influence of parameters
 - prognostic: probabilistic QPE
- 3. GPM Microwave Imager
- 4. IMERG
- 5. Conclusions & perspectives

Dual-frequency Precipitation Radar Assumed relations between DSD parameters in V05

• Rainfall – mass weighted mean diameter relation: R-Dm

• stratiform: $R_{DPR} = 0.401 \, \epsilon^{4.649} \, D_m^{6.131}$

 ϵ : adjustment parameter

• convective: $R_{DPR} = 1.370 \, \epsilon^{4.258} \, D_m^{5.420}$

Dm: mean diameter

- Questions:
 - O Do the constant values depend on precipitation regimes, types, ...?
 - O What is the room for improvement?

Methodology

○ stratiform: $R_{ref} \Leftrightarrow 0.401 \, \epsilon^{4.649} \, D_m^{6.131}$

○ convective: $R_{ref} \Leftrightarrow 1.370 \ \epsilon^{4.258} \ D_m^{5.420}$

courtesy Seto-san

Dual-frequency Precipitation Radar Conditional biases

DPR QPE = $f(\varepsilon, D_{m_i})$ precipitation type, ...)

PDF(R_{ref}) = f (ϵ , D_{m_r} precipitation type, ...)

Relative bias DPR / Prognostic QPE Relative bias DPR / Prognostic QPE Relative bias DPR / Prognostic QPE Adjustment factor Epsilon (-) Relative bias DPR / Prognostic QPE

stratiform

convective

Dual-frequency Precipitation Radar Scores

	brightband		stratiform		convective	
	3	D _m	3	D _m	ε	D _m
DPR	4.649	6.131	4.649	6.131	4.258	5.420
PQPE	2.321	3.941	1.833	3.165	1.647	3.365
	Bias	Correlation	Bias	Correlation	Bias	Correlation
DPR	+0.46	0.54	-21.0%	0.35	-8.9%	0.37
PQPE	-0.32%	0.61	-3.3%	0.43	+2.89%	0.52

Dual-frequency Precipitation Radar Probabilistic QPE

DPR-NS PQPE = f (reflectivity, precipitation type,

Storm system at 12:30 UTC on 18 April 2016 near Houston

Dual-frequency Precipitation Radar Probabilistic QPE

DPR PQPE = f (reflectivity, precipitation type, incidence angle)

Rainfall rate (mm/h

Storm system at 12:30 UTC on 18 April 2016 near Houston

- 1. Context on MRMS and GPM
- 2. Dual-frequency Precipitation Radar
- 3. GPM Microwave Imager
 - influence of surface
 - precipitation types in GRPOF next version
- 4. IMERG
- 5. Conclusions & perspectives

- •period: 05/14 10/16
- •~6.5 millions matched pairs

- detection
- rain / snow classification
- precipitation types
- quantification

GMI surface type – V04 vs V05: bias and correlation

Conditions of comparison: rain estimates (GPROF & reference) reference beam filling > 50% rates > 0.01 mm/h (GPROF & reference)

Toward the next GPROF version: convective contribution

GPROF-GMI V05 relative bias vs Reference

- currently GPROF does not condition the retrieval by precipitation types (convective/stratiform)
- Can we see an improvement in precipitation rate estimates if GPROF correctly estimates the convective contribution?

Toward the next GPROF version: convective contribution

GPROF-GMI V05 correlation vs Reference

- currently GPROF does not condition the retrieval by precipitation types (convective/stratiform)
- Can we see an improvement in precipitation rate estimates if GPROF correctly estimates the convective contribution?

- 1. Context on MRMS and GPM
- 2. Dual-frequency Precipitation Radar
- 3. GPM Microwave Imager
- 4. IMERG
 - precipitation types
 - probabilistic QPE with Infrared observations
- 5. Conclusion & perspectives

From Level 2 to Level 3

Objective: mitigate propagation of Level 2 biases to Level 3 precipitation products satellite Level 3 developers have specifically required the inclusion of error and uncertainty fields Satellite L2 comparison Reference L2 evaluation & orbital improvement 1km / 2min instantaneous scale impact Satellite L3 comparison Reference L3 evaluation & gridded 1km / 30min improvement 30-min **Precipitation features:** intermittency type

rate variability

IMERG diagnostic analysis: convective index

 currently GPROF does not condition the retrieval by the precipitation typology (convective/stratiform)

→ It probably propagates into IMERG

Convective Percent Index

Distribution of Residuals

IMERG diagnostic analysis: convective index

IMERG diagnostic analysis: other factors

IMERG detection

Strongly depends on intermittency

Combining PMW and IR

Bias and uncertainty increases when more weight given to IR

IMERG error analysis: impact of precipitation features

	IMERG estimate	IMERG estimate + Rain fraction	IMERG estimate + Convective contribution	IMERG estimate + Variability
Stratiform reference explained variance	18%	42%	-	62%
Increment		+24%	-	+44%
Convective reference explained variance	12%	23%	55%	72%
Increment		+11%	+43%	+60%

- Significant part of the IMERG systematic error explained by precipitation features → potentially interesting to include in the retrieval
- Basis for systematic / random error modeling and probabilistic retrievals
- Predict the IMERG regional and seasonal uncertainty

IMERG Infrared part:

Precipitation Estimation from Remotely Sensed Imagery using Artificial Neural Network-Cloud Classification Systems

Analyzing PERSIANN-CCS cluster #306

- Dispersion in the relation Tb(IR)-RR, including rain/no-rain and positive values
- General decrease of rain rates with higher Tbs

Analyzing PERSIANN-CCS cluster #306

- Positive rain rates observed for Tb > 247K
- Zero rain rates observed for Tb < 247K
- Significant conditional bias:

overestimation Tb < 220 K, underestimation Tb > 230 K

 Extreme rain rates associated with lower Tbs than observed

Probabilistic QPE using Infrared Satellite Observations

Conditional bias

Kirstetter, Karbalaee et al., cond. accepted in QJRMS

Probabilistic QPE using Infrared Satellite Observations

precipitation system at 1200 UTC on June 17, 2014

- 1. Context on MRMS and GPM
- 2. Dual-frequency Precipitation Radar
- 3. GPM Microwave Imager
- 4. IMERG
- **5. Conclusion & perspectives**

- 1. Dual-frequency Precipitation Radar
- R-D_m relation
- Probabilistic QPE
- 2. GPM Microwave Imager
- Influence of surface (Land Surface Working Group)
- Precipitation types
- 3. IMERG
- Impact of precipitation features, weight given to IR
- Probabilistic QPE

Probabilistic Quantitative Precipitation Estimates

with ...

MRMS Rain/Snow delineation

MRMS snow water equivalent
 PDF(SWE) = f (Z, T, H)

	MRMS	PQPE 1D (Z)	PQPE 3D (Z, T, H)
Bias (%)	-45.5%	-0.02%	0.67%
Correlation	0.48	0.49	0.59

This work is made possible through support by NASA Ground Validation program and Precipitation Measurement Mission program.

